Спецификация

контрольно-измерительных материалов итоговой работы по курсу органической химии для учащихся 10 класса

Предмет: «химия» 10 класс

Учебник для общеобразовательных учреждений под редакцией О.С. Габриеляна

Вид контроля: итоговый

Тема: «Итоговая контрольная работа»

1. Назначение КИМ

Контрольно-измерительные материалы позволяют установить уровень освоения учащимися материала курса «Химия. 10 класс. Базовый уровень» по результатам итоговой контрольной работы за курс органической химии.

2. Подходы к отбору содержания, разработке структуры КИМ ЕГЭ

Основой разработки КИМ является рабочая программа по химии 10 класс. Задания, контролирующие степень овладения знаниями и умениями, охватывают наиболее существенные вопросы содержания курса химии в 10 классе и позволяют проверить:

Кодификатор

элементов содержания и требований к уровню подготовки обучающихся для проведения итоговой контрольной работы по химии в 8-9 классе

1. Перечень элементов предметного содержания, проверяемых на контрольной работе

Код элемента		Элементы содержания, проверяемые на контрольной работе						
1.		Итоговая контрольная работа по курсу органической химии						
	1.1	Теория строения органических соединений						
	1.2	Алкадиены. Каучуки						
1.3		Альдегиды						
	1.4	Химические свойства основных классов органических соединений и типы химических реакций						
	1.5	Спирты						
	1.6	Генетическая связь между классами органических соединений						
	1.7	Нефть и способы ее переработки						
	1.8	Номенклатура органических соединений						
	1.9	Задачи на нахождение молекулярной формулы органического вещества						

2. Перечень требований к уровню подготовки учащихся 10 класса, достижение которых проверяется на итоговой контрольной работе по курсу органической химии

В первых двух столбцах таблицы даны коды требований, в третьем - требования к уровню подготовки учащихся, достижение которых проверяется на итоговой контрольной работе по курсу органической химии.

Код		Требования к уровню подготовки учащихся, освоение которых					
требований		проверяется на контрольной работе					
1.		ЗНАТЬ И ПОНИМАТЬ					
	1.1	Важнейшие химические понятия					
1.1.1.		изомеры, гомологи, структурная и молекулярная формулы, функциональная группа, мономер, каучук, номенклатура ИЮПАК					
	1.1.2.	алкадиены, алкены, алкины, спирты, альдегиды, арены (ароматические углеводороды), карбоновые кислоты, белки					
	1.1.3.	реакции: присоединения, полимеризации, этерификации, серебряного зеркала					

	1.1.4.	химический состав нефти						
	1.1.5.	общие формулы классов органических веществ						
	1.2	Химические свойства основных классов органических соединений						
	1.2.1.	ароматических углеводородов, спиртов, алкинов, карбоновых кислот						
	1.2.2.	кислотные свойства						
	1.3	Качественные реакции						
	1.3.1.	качественные реакции на класс: алканы, алкены, белки						
	1.4	Основные теории						
	1.4.1.	Теория строения органических соединений А.М. Бутлерова и ее						
		постулаты						
2.	2.1	УМЕТЬ						
	2.1.1.	оперировать постулатами теории строения органических соединений						
	2.1.2	определять класс органических веществ по формуле						
	2.2	Находить						
	2.2.1.	находить общую формулу определенного класса органических						
		соединений						
	2.2.2.	находить число структурных изомеров и гомологов для формул веществ						
	2.2.3.	класс веществ по функциональной группе						
	2.2.4.	формулу неизвестного вещества, используя химические реакции						
	2.3	Называть						
	2.3.1.	формулы органических соединений по номенклатуре ИЮПАК						
	2.4	Составлять						
	2.4.1.	уравнения химических реакций						
	2.5	Устанавливать генетические связи между						
	2.5.1.	классами органических веществ						
	2.6	Устанавливать соответствия между						
	2.6.1.	реагентами и продуктами химических реакций						
	2.7	Проводить						
	2.7.1.	вычисления по химическим уравнениям						

3. Спецификация КИМ для проведения итоговой контрольной работы по химии в 9 классе

Предмет: «химия» 8-9 класс

Учебник для общеобразовательных учреждений под редакцией О.С. Габриеляна

Вид контроля: итоговый

Тема: «Итоговая контрольная работа»

Назначение контрольной работы: оценить уровень освоения каждым учащимся 8-9 класса содержания тем за учебный год по предмету «химия».

Содержание контрольных измерительных заданий определяется содержанием рабочей программы учебного предмета «химия», а также содержанием учебника для общеобразовательных учреждений под редакцией О.С. Габриеляна.

Распределение заданий по уровням сложности, проверяемым элементам предметного, метапредметного содержания, уровню подготовки, типам заданий представлено в таблице 1

Таблица 1.

Nº	Уровен ь сложнос ти	Проверяемые элементы содержания	Номера тестовых заданий	Коды проверяемых элементов содержания	Коды требований к уровню подготовки
					выпускников
1	Базовый	Теория строения органических	A1, A3, A4	1.1	1.1.1, 1.4.1, 2.1.1,
		соединений			2.2.2.
2	Базовый	Алкадиены. Каучуки	A2, A14	1.2	1.1.2, 1.1.5, 2.2.1.

3	Базовый	Альдегиды	A5, A15	1.3	1.1.1, 1.1.5, 2.2.1,
					2.2.2, 2.2.3.
4	Базовый	Химические свойства основных	A6, A8, A9	1.4	1.1.2, 1.1.3, 1.2.1,
		классов органических соединений	A10, A16 B2,		1.2.2, 1.3.1, 2.2.4.
		и типы химических реакций	В3		2.6.1.
5	Базовый	Спирты	A7, A11	1.5	1.1.2, 1.2.1.
6	Базовый	Генетическая связь между	A12	1.6	2.5.1.
		классами органических			
		соединений			
7	Базовый	Нефть и способы ее переработки	A13	1.7	1.1.4.
8	Повыше	Номенклатура органических	B1	1.7	1.1.1, 1.1.2, 2.1.2
	нный	соединений			2.3.1.
9	Высоки	Задачи на нахождение	C1	1.8	2.4.1, 2.7.1.
	й	молекулярной формулы			
		органического вещества			

Задания части А проверяют знания о:

- изомерах, гомологах, структурных и молекулярных формулах, функциональной группе, мономерах, каучуках;
- алкадиенах, алкенах, алкинах, спиртах, альдегидах, аренах, карбоновых кислотах, белках;
- реакциях: присоединения, полимеризации, этерификации, серебряного зеркала;
- химическом составе нефти;
- общих формулах классов органических веществ;
- химических свойствах основных классов органических соединений;
- кислотных свойствах;
- качественных реакциях основных классов органических соединений;
- Теории строения органических соединений.

Умения:

- оперировать постулатами теории строения органических соединений;
- определять класс органических веществ по формуле;
- находить общую формулу определенного класса органических соединений;
- находить число структурных изомеров и гомологов для формул веществ;
- -находить класс веществ по функциональной группе;
- формулу неизвестного вещества, используя химические реакции.

Задания части В проверяют знания о:

- номенклатуре ИЮПАК;
- реакциях: присоединения, полимеризации, этерификации, серебряного зеркала;
- химических свойствах основных классов органических соединений.

Умение:

- называть формулы органических соединений по номенклатуре ИЮПАК;
- устанавливать связи между реагентами и продуктами химических реакций.

Задание части С проверяет знания о:

- химических свойствах основных классов органических соединений.

Умение:

- составлять уравнения химических реакций;
- проводить вычисления по химическим уравнениям.

3. Структура КИМ

На выполнение контрольной работы в 10 классе отводится 40 минут. Работа состоит из 3 частей и включает в себя 20 заданий и состоит из трех частей, различающихся формой и уровнем сложности.

Часть 1 (A) содержит 16 заданий с ответом в виде одной цифры, соответствующей номеру правильного ответа. За выполнение каждого задания - 1 балл.

Часть 2 (B) содержит 3 задания: из них задание B1 с кратким ответом, B2 с выбором нескольких правильных ответов (множественным выбором), B3 на установление соответствия.

За выполнение каждого задания - 2 балл.
Часть 3 (С) содержит 1 задание с развернутым ответом. За выпол

Часть 3 (C) содержит 1 задание с развернутым ответом. **За выполнение - 3 балла.** Перевод баллов к 5-балльной отметке представлен в таблице 3.

Таблица 2.

0-12 баллов – «2»	19-23 баллов – «3»
13-18 баллов – «4»	24-25 баллов – «5»

Итоговая контрольная работа по курсу органической химии

- А1. Оцените справедливость суждений:
- А) Свойства веществ не зависят от порядка соединения атомов в их молекулах.
- Б) Вещества, сходные по строению и отличающиеся по составу, называют изомерами.
- 1) верно только А
- 2) верно только Б
- 3) оба суждения верны
- 4) оба суждения неверны
- А2. Общая формула класса соединений, к которому принадлежит вещество

H₃C-CH₂-CH=CH-CH₂

- 1) C_nH_{2n-2}
- 2) C_nH_{2n}
- 3) C_nH_{2n+2}
- 4) C_nH_{5n}
- А3. Число структурных изомеров гексана:
 - 1) 5
 - 2) 6
 - 3) 3
 - 4) 4
- **А4.** Гомологом бутанола 2 является вещество, формула которого:
 - 1) H₃C-CH₂-CHOH-CH₃
 - 2) H₃C-CH₂-CH₂-CH₂-OH
 - 3) H₃C-CHOH-CH₃
 - 4) H₃C-CH₂-CH₂-CH₂-CH₂-OH
- А5. Функциональная группа –СОН характерна для веществ класса:
 - 1) спиртов
 - 2) карбоновых кислот
 - 3) альдегидов
 - 4) кетонов
- А6. В реакцию присоединения способны вступать:
 - 1) алканы и арены
 - 2) арены и альдегиды
 - 3) альдегиды и предельные спирты
 - 4) предельные спирты и алкены
- **А7.** С гидроксидом меди (II) не реагирует:
 - 1) уксусная кислота
 - 2) глюкоза

3) глицерин	
4) этанол	
А8. Кислотные свойства органического вещества проявляются в реакции между:	
1) гидроксидом меди (II) и ацетальдегидом	
2) оксидом меди (II) и этанолом	
3) этанолом и уксусной кислотой	
4) гидроксидом натрия и фенолом	
А9. Пентан вступает в реакцию с:	
1) бромной водой	
2) раствором перманганата калия	
3) кислородом	
4) гидроксидом натрия	
А10. Гидроксид меди (II) образует фиолетовый раствор при смешивании с :	
1) глицерином	
2) глюкозой	
3) белком куриного яйца	
4) муравьиной кислотой	
А11. При пропускании этилена через водный раствор перманганата калия образуется вещество	,
формула которого:	
1) HO-CH ₂ -CH ₂ -OH	
2) H ₃ C-CH ₂ -OH	
3) H ₃ C-CH ₂ -O-CH ₂ -CH ₃	
4) $H_3C-CH=O$	
A12. В схеме превращений $CaC_2 \rightarrow X \rightarrow C_6H_6$ веществом X является:	
1) метан	
2) ацетилен	
3) гексан	
4) циклогексан	
А13. В состав нефти входят:	
1) алканы	
2) алкены	
3) алкины	
4) алкадиены	
А14. Мономером одной из разновидностей синтетического каучука является:	
1) $H_2C=CCI-CH=CH_2$	
2) $H_2C=CH-CH_2-CH=CH_2$	
3) $H_2C=CH-CH_3$	
4) NH ₂ -(CH ₂) ₅ -COOH	
A15. Реакция «серебряного зеркала» с аммиачным раствором оксида серебра характерна для	ł
класса:	
1) альдегиды	
2) алканы	
3) кетоны	

4) карбоновые кислоты

А 16. Ослабление кислотных свойств происходит в ряду кислот:

муравьиная → уксусная → стеариновая
 стеариновая → муравьиная → уксусная

- 3) уксусная → муравьиная → стеариновая
- 4) стеариновая → уксусная → муравьиная
- **В1.** Название по номенклатуре ИЮПАК вещества, формула которого HC≡C-CH(CH₃)-CHOH-CH₂-CH₃
- **В2.** Вещество, структуру которого отражает формула H₂C=CH-COOH, вступает в реакции:
 - 1) полимеризации
 - 2) этерификации
 - 3) с сульфатом натрия
 - 4) серебряного зеркала
 - 5) с гидроксидом калия
 - 6) с пропаном

-				
Ответ:				

В3. Установите соответствие:

Исходные вещества	Основной продукт реакции
A. H ₂ C=CH-CH ₂ -CH ₃ + HCI	1. H ₃ C-CHCI-CH ₂ -CH ₃
Б. H ₃ C-CHOH-CH ₂ -CH ₃ + CuO	2. CICH ₂ - CH ₂ - CH ₂ - CH ₃
В. H ₃ C-CH ₂ OH ^H ₂ SO ₄ (конц.), t	3. H ₃ C-CO-CH ₂ -CH ₃
Г. HC≡C-CH ₂ -CH ₃ + H ₂ O ^{Hg2+}	4. H ₃ C-CH ₂ -CH ₂ -CH=O
-	5. H ₂ C=CH ₂
	6. H ₃ C-CH ₂ -O-CH ₂ -CH ₃

C1.	Алкен	массой	2,1	Γ	присоединяет	1,12	Л	хлора	(н.у.).	Этот	алкен
называется											